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Abstract

The stability of parametric vibrations of circular plate subjected to in-plane forces is analyzed by the Liapunov

method. Assuming that the compressing forces are physically realizable ergodic processes the plate dynamics is de-

scribed by stochastic classical partial differential equations. The energy-like functional is proposed; its positiveness is

equivalent to the condition in which static buckling does not occur. Taking into account that a plate is compressed

radially by time-dependent and uniformly distributed along its edge forces, a dynamic stability of an undeflected state of

isotropic elastic circular plate is analyzed. The rate velocity feedback is applied to stabilize the plate parametric vi-

bration. The critical damping coefficient has been expressed by the variance and the mean value of compressing force.

The admissible variances of loading strongly depend on the feedback gain factor.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Axisymmetric (rotating or not) disks are common elements in modern structures and machinery, such as

diaphragms and shields in acoustic ducts, turbine disks, circular saws, and memory disk units. Timoshenko

(1936) calculated the critical compressive force uniformly distributed on the edge of elastic circular plate

for different boundary conditions. The first purely analytical analysis of elastic rotating disks was by

Lamb and Southwell (1921). Mote (1965) analyzed free vibrations of initially prestressed circular disks.

Mostaghel and Tadjbakhsh (1973) studied the eigenvalue problem for rotating elastic circular plate, and

devised numerical procedures to evaluate the critical rotation speed and its dependence on the relevant

parameters. Seubert et al. (2000) investigated constrained layer damping in computer disk drives. Applying
the finite element method they calculated natural frequencies and damping ratios for the damped disks.
* Corresponding author. Fax: +48-22-660-8622/8244.

E-mail address: aty@simr.pw.edu.pl (A. Tylikowski).

0020-7683/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0020-7683(03)00263-4

mail to: aty@simr.pw.edu.pl


5188 A. Tylikowski, K. Frischmuth / International Journal of Solids and Structures 40 (2003) 5187–5196
The result provide damping values useful in the stability analysis of spinning disks that include the passive

damping. Auburn et al. (1984) presented the detailed approach and experimental results for controlling

both the rigid body and five structural bending modes of a circular plate used in large space structures.

Kuo and Huang (1992) developed analysis and simulation of a control system design method which can
stabilize all the vibration modes of a flexible distributed parameter system with a discrete set of sensors and

actuators without involving truncation of the higher frequency modes. The method based on the root locus

arguments for infinite dimensional systems was applied to a thin rotating with constant angular velocity

centrally clamped circular disk. Manzione and Nayfeh (2001a,b) analyzed the transverse vibrations of a

circular disk of uniform thickness rotating about its axis with constant angular velocity, when the disk is

subject to a space-fixed spring-mass-dashpot system. Using the method of multiple scales they determined

a nonlinear system of equations describing the modulation of the amplitudes and phases of two interacting

modes. The authors obtained interacting solutions among lowest modes and stability characteristics of
these solutions.

Piezoelectric materials show great advantages as actuators in intelligent structures i.e. structures with

highly distributed actuators, sensors, and processor networks. Piezoelectric sensors and actuators have been

applied successfully in the closed loop control (Bailey and Hubbard, 1985). Crawley and de Luis (1987)

presented a comprehensive static model for a piezoelectric actuator glued to a beam. The relationship

between static structural strains, both in the structure and in the actuator, and the applied voltage across

the piezoelectric was presented. This static approach was then used to predict the dynamic behavior. The

direct Liapunov method was applied to the stabilization problem of the beam subjected to time-dependent
axial forces (Tylikowski, 1993).

An active control approach that reduces transient noise transmission through a membrane placed in a

circular duct was presented by van Niekerk and Tongue (1995). Different control strategies were in-

vestigated analytically and than implemented experimentally. Structural vibration of a circular plate due

to the excitation of a piezoelectric circular actuator was modeled by van Niekerk et al. (1995) using a

static approach to modeling the actuator–plate interaction. The dynamic stability of circular plates

uniformly compressed by broad-band radial forces and described by stochastic Itôo equations was in-

vestigated analytically by Tylikowski and Frischmuth (2001). The stability domains have been expressed
by the intensity and the mean value of the compressing force and the critical damping coefficients. A

dynamic model for the simply supported circular plate with a piezoelectric actuator glued to each of its

upper and lower surfaces was developed by Tylikowski (1999a). In the model the actuators were assumed

to be perfectly bonded. It means that the bonding layer is sufficiently thin that the shear of layer can be

neglected. Vibrations of capacitively shunting distributed piezoelectric elements perfectly glued to the

vibrating annular plate excited by harmonic displacement of the inner edge was analyzed by Tylikowski

(2001).

The aim of the present analytical work is to generalize the previous result concerning beams––one di-
mensional continuous systems (Tylikowski, 1999b) and to investigate an asymptotic stability of circular

plate compressed radially by time-dependent forces. The problem is reduced to the partial differential

equation of the three independent variables with time-dependent coefficient. The stability of parametric

vibrations of circular plate subjected to in-plane forces is analyzed by the Liapunov method. Assuming that

the compressing forces are physically realizable ergodic processes the plate dynamics is described by a

stochastic classical partial differential equation. The energy-like functional is proposed; its positiveness is

equivalent to the condition in which static buckling does not occur. Taking into account that a plate is

compressed radially by time-dependent and uniformly distributed along its edge forces, a dynamic stability
of an undeflected state of isotropic elastic circular plate is analyzed. The rate velocity feedback is applied to

stabilize the plate parametric vibration. The critical damping coefficient has been expressed by the variance

and the mean value of compressing force. The admissible variances of loading strongly depend on the

feedback gain factor.
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2. Problem formulation

We start with the problem of dynamic stability of circular plate without the active vibration control.

Consider transverse vibrations of a thin elastic circular plate clamped on its edge. The Kirchhoff hypothesis
on nondeformable normal elements to the middle plane is used and the rotary and coupling inertias are

neglected. Taking into account the in-plane compressive forces, we assume that they are uniformly dis-

tributed along the plate circular edge of radius R. The forces are time-dependent and consist of a constant

mean value S0 and time-dependent oscillating part SðtÞ. The thickness of the plate tp is constant and the

energy of the transverse motion is dissipated by a viscous damping with the constant proportionality co-

efficient b. The mass density is denoted by q and the bending stiffness by D. The dynamic equation of the

transverse plate motion has the classical form
qtp
o2w
ot2

þ 2bqtp
ow
ot

þ DD2wþ ðS0 þ SðtÞÞDw ¼ 0 ðr;uÞ 2 X � f0;Rg � f0; 2Pg ð1Þ
where
D ¼ 1

r
o

or
r
o

or

� �
þ 1

r2
o2

ou2
Boundary conditions corresponding to clamped edge are as follows
wðRÞ ¼ 0
ow
or

ðRÞ ¼ 0 ð2Þ
Dividing by qtp we introduce the notations
e ¼ D
qtp

f0 ¼
S0
qtp

f ðtÞ ¼ SðtÞ
qtp
and rewrite Eq. (1) in the form
o2w
ot2

þ 2b
ow
ot

þ eD2wþ ðf0 þ f ðtÞÞDw ¼ 0 ðr;uÞ 2 X ð3Þ
The main purpose of the paper is to examine an almost sure asymptotic stability of the plate equilibrium
state. To estimate a perturbed solution of Eq. (3) it is necessary to introduce a measure of distance k k of

the solution of Eq. (3) with nontrivial initial conditions from the trivial one. The equilibrium state of Eq. (3)

is called almost sure asymptotically stable if
lim
t!1

Pfkwð:; tÞk ¼ 0g ¼ 1 ð4Þ
where P denotes the probability measure. In the present paper we shall use the Liapunov technique derived

for the Euler–Bernoulli beam by Kozin (1972), which provides a significant advantage in that the condi-

tions for stability can be obtained without explicitly solving the plate equation of motion. The method

is used to establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of

the plate compressed by the uniformly distributed time-dependent forces.
3. Dynamic stability analysis

If the parametric excitation is a physically realizable ergodic process, Eq. (3) is understood as the partial
differential equation with a random parameter. In order to examine the uniform stability of the plate
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equilibrium (the trivial solution w ¼ 0), we choose the Liapunov functional as a sum of the modified kinetic

energy and the elastic energy of the plate (Tylikowski, 1993)
V ¼ 1

2
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Z 2P

0

v2
"

þ 2bvwþ 2b2 þ e ðDwÞ2
"

� 2ð1� mÞ o
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#
þ f0wDw

#
rdrdu ð5Þ
where v is the velocity of transverse motion. The classical static buckling loading fcr can be calculated from
variational inequality
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If the static buckling condition is fulfilled (f0 < fcr), inequality (6) holds and therefore functional (5) is

positive-definite. Therefore, the measure of distance between the perturbed solution and the trivial one can
be chosen as the square root of the functional k k ¼ V1=2. Upon differentiation with respect to time and

using the boundary conditions (2) we obtain the time-derivative of functional (5) in the form
dV
dt

¼ �2bV þ 2U ð7Þ
where
U ¼ 1

2

Z R

0

Z 2P

0

2b2vw
�

þ 2b3w2 � ðwþ bwÞf ðtÞDw
�
rdrdu ð8Þ
We look for a function k defined as a maximum over all admissible functions w and v satisfying the
boundary conditions of the ratio U=V
k ¼ max|ffl{zffl}
w;v

Uðw; vÞ
V ðw; vÞ ð9Þ
Because a maximum is a particular case of a stationary point, we put to zero a variation of U=V and obtain

the variational equation
dðU � kV Þ ¼ 0 ð10Þ

The appropriate Euler equations have the form
bðb� kÞw� kv� f ðtÞ
2

Dw ¼ 0

bðb� kÞðvþ 2bwÞ � f ðtÞ
2

ð2bDwþ DvÞ � kf0Dw� keD2w ¼ 0

ð11Þ
Using properties of Bessel functions we can prove that for solutions of boundary problem (2) repre-

sented as
wmnðr;uÞ ¼ ½JnðjmnrÞ þ CmnInðjmnrÞ�ðsin nuþ cos nuÞ ð12Þ

where jmn is the wavenumber, m ¼ 1; 2; 3; . . . denotes the number of nodal circles and n ¼ 0; 1; 2; . . . denotes
the number of nodal diameters, Cmn are the known constants, Jn and In are the Bessel functions
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Dwmn ¼
1
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r
owmn

or

� �
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r2
o2wmn

ou2
¼ �j2

mnwmn ð13Þ
Eliminating the operator D by means of (13) we solve the Euler equations with boundary conditions (2) and

finally we have
kmn ¼
jb2 þ j2

mnf ðtÞ=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðej2

mn � f0Þj2
mn þ b2

q ð14Þ

erefore, in the class of functions (12) the following inequality holds for any pair of indices
Th
Uðwmn; vmnÞ6 kmnV ðwmn; vmnÞ ð15Þ

We have the following chain of inequalities
U ¼
X1
m¼1

X1
n¼0

Uðwmn; vmnÞ6
X1
m¼1

X1
n¼0

kmnV ðwmn; vmnÞ6 max|ffl{zffl}
m ¼ 1; 2; 3; . . .|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n ¼ 0; 1; 2; . . .

kmn
X1
m¼1

X1
n¼0

V ðwmn; vmnÞ ¼ kV

ð16Þ

where
k ¼ max|ffl{zffl}
m ¼ 1; 2; 3; . . .|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n ¼ 0; 1; 2; 3; . . .

jb2 þ j2
mnf ðtÞ=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðej2
mn � f0Þj2

mn þ b2
q ð17Þ
Using the basic inequality (16) we can estimate the time-derivative of functional (5) as follows
dV
dt

6 � 2ðb� kÞV ð18Þ
The first order differential inequality (18) has the following solution
V ðtÞ6 V ð0Þ exp
�
� 2 b

�
� 1

t

Z t

0

kðs;xÞds
�
t
�

ð19Þ
where x is an element of probability space. As the function k is the known function of in-plane forces

Eq. (17) the ergodicity of the in-plane forces implies the ergodicity of function k. It means that
Ek ¼ lim
t!1

1

t

Z t

0

kðs;xÞds ð20Þ
where E denotes the mathematical expectation (averaging over the probability space).

Therefore, using the ergodicity of the in-plane forces we can state that the trivial solution of Eq. (3) is

almost sure asymptotically stable if
bPEðkÞ ð21Þ

Inequality (21) gives us a possibility to obtain minimal damping coefficient guaranteeing the almost sure

asymptotic stability called critical damping coefficients. A domain where damping coefficients are greater

that the critical damping coefficient is called the stability region. The stability regions as functions of

loading variance, damping coefficient, constant component of in-plane force are calculated numerically
using an approximate method. First, discrete values of force f are chosen, the largest value k is determined,

and the expectation is calculated numerically integrating the product of k by the probability density
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function of in-plane loading. This is accomplished for various values of parameters by choosing the

variance and varying the damping coefficient until inequality (21) will be satisfied. Numerical calculations

are performed for the Gaussian process with the constant mean value f0 and variance r2 and for the

harmonic process with an amplitude A. In order to compare both processes the variance of harmonic

process r2 ¼ A2=2 is used. Fig. 1 shows the influence of constant component of in-plane force on stability

region for the Gaussian parametric excitation. The coefficient c ¼ 0 denotes that the plate without the

active vibration control is analyzed. In Fig. 2 a comparison of stability regions for the Gaussian and the

harmonic process. The stability regions are similar, but the Gaussian loading needs smaller critical damping
coefficient than the harmonic loading.
4. Plate dynamics equation with distributed feedback

Consider the circular plate with piezoelectric layers of thickness ts mounted on each of two opposite plate

sides. The layers are polarized in the direction perpendicular to the plate. The sensing and actuating effects
of piezoelectric layers are used to stabilize both the free vibration due to initial disturbances and the
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parametric vibration excited by the in-plane time-dependent forces. The sensor electric displacement is

given by
D3 ¼ ere3r þ ete3t ð22Þ

where e3r and e3t are piezoelectric constants and er, et are the radial and circumferential strains of sensor,

respectively given by
er ¼ � tp þ 2ts
2

o2w
or2

ð23Þ

et ¼ � tp þ 2ts
2

1

r
1

r
o2w
ou

�
þ ow

or

�
ð24Þ
The electric charge is obtained by integrating the electric displacement over the sensor surface assuming

the appropriate sensor polarization profile Us. It is assumed that the piezoelectrical properties are axially

symmetric, therefore e3r ¼ e3t ¼ e31
Qs ¼ � e31ðtp þ 2tsÞ
2

Z R

0

Z 2P

0

DwUsrdrdu ð25Þ
Using the formula for a flat capacitor we obtain the sensor voltage Vs
Vs ¼ � e31ðtp þ 2tsÞts
4�33As

Z R

0

Z 2P

0

DwUsrdrdu ð26Þ
where �33 is the dielectric constant, As is the sensor surface.

Assuming the velocity feedback control the voltage applied to the actuator is
Va ¼ Ka

dVs
dt

ð27Þ
where Ka is the gain factor.

Actuator stresses are equal
rar ¼
da31VaUa

ta
ð28Þ

rat ¼
da32VaUa

ta
ð29Þ
where da31 and da32 are the piezoelectric strain/charge coefficients of actuator. Ua is the axially symmetric

actuator polarization profile, i.e. Ua ¼ UðrÞ. Integrating the actuator stresses with respect to the coordinate

perpendicular to the plate yields the equivalent electric moments
M e
r ¼ rarta

tp þ ta
2

ð30Þ

M e
u ¼ ratta

tp þ ta
2

ð31Þ
We modify the dynamic equation (3) introducing the axially symmetric bending moments of electric
origin
o2w
ot2

þ 2b
ow
ot

þ eD2wþ ðf0 þ f ðtÞÞDwþ o2me
r

or2
þ 2

r
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r
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u

or
¼ 0 ðr;uÞ 2 X ð32Þ
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where the moments of electric origin me
r and me

u are defined as follows
me
r ¼

M e
r

qtp
¼ �ðtp þ taÞðtp þ 2tsÞtatse31da31Ka

8qtpAs�33
Ua

Z R

0

Z 2P

0

DwUsrdrdu ð33Þ

me
u ¼ M e

r

qtp
¼ � ðtp þ taÞðtp þ 2tsÞtatse32da31Ka

8qtpAs�33
Ua

Z R

0

Z 2P

0

DwUsrdrdu ð34Þ
Substituting expressions (33) and (34) into (32) we obtain the equation of circular plate with distributed

velocity feedback. The equation is linear with the trivial solution w ¼ 0 (equilibrium state).
5. Stabilization of plate parametric vibrations

The introductory stability problem being solved we can direct our attention to the stability analysis of

the plate with active vibration control. We assume the same Liapunov functional in the form (5). Calcu-
lating the time-derivative of the functional we take into account a modification of dynamic equation in-

troduced by the electric moments. Assuming the polarization profiles of the sensor and actuator in the form

of the first axially symmetric mode we repeat the derivation of the function k. The total feedback gain factor

of modal control is denoted by c. The function k is defined in the following way
k ¼ max|ffl{zffl}
m ¼ 1; 2; 3; . . .|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n ¼ 0; 1; 2; . . .

kmn ð35Þ
where kmn for m; n ¼ 1; 2; 3; . . . are defined in the same way as in the stability problem Eq. (14) and k10
depends on the feedback control and is given by
k10 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ðb2 þ j2

10f ðtÞ=2Þ
2

ðej2
10 � f0Þj2

10 þ b2

s
� c ð36Þ
The stability regions as functions of loading variance r2, damping coefficient, feedback gain factor c, and
constant component of in-plane force are calculated numerically using an iterative method since the in-

equality (21) defining the stability regions is transcendental. Fig. 3 shows the comparison of stability do-
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mains for the critical mean force with a single-mode velocity feedback. It is seen that the stability regions

enlarge as the gain factor increases. The active vibration control stabilizes the plate compressed by the

critical force fcr. As long as the control is not active (c ¼ 0) the stability region disappears. The influence of

the feedback gain is small for stretching mean forces. A saturation effect on stability regions is observed for

large values of gain factor. Fig. 4 compares the stability regions for the plate with critical mean force loaded

by the Gaussian force (continuous line) and harmonic force (dotted line), respectively. It is visible that the
influence of the class of excitation is noticeable for 36 c6 10.
6. Conclusions

By means of the direct Liapunov method the influence of active stabilization of a parametrically excited

circular plate with distributed piezoelectric sensor and actuator, and the velocity feedback has been studied.

The plate is clamped and subject to axially symmetric in-plane forces randomly fluctuating. Without any
passive damping and control the plate vibrations are unstable due to the parametric excitation. The sta-

bilization of stochastic vibrations needs a sufficiently large active damping coefficient. A saturation effect of

influence of gain factor on stability domains is observed. The stability domains do not change qualitatively

when going from the Gaussian process to the harmonic one.
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