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Abstract

The stability of parametric vibrations of circular plate subjected to in-plane forces is analyzed by the Liapunov
method. Assuming that the compressing forces are physically realizable ergodic processes the plate dynamics is de-
scribed by stochastic classical partial differential equations. The energy-like functional is proposed; its positiveness is
equivalent to the condition in which static buckling does not occur. Taking into account that a plate is compressed
radially by time-dependent and uniformly distributed along its edge forces, a dynamic stability of an undeflected state of
isotropic elastic circular plate is analyzed. The rate velocity feedback is applied to stabilize the plate parametric vi-
bration. The critical damping coefficient has been expressed by the variance and the mean value of compressing force.
The admissible variances of loading strongly depend on the feedback gain factor.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Axisymmetric (rotating or not) disks are common elements in modern structures and machinery, such as
diaphragms and shields in acoustic ducts, turbine disks, circular saws, and memory disk units. Timoshenko
(1936) calculated the critical compressive force uniformly distributed on the edge of elastic circular plate
for different boundary conditions. The first purely analytical analysis of elastic rotating disks was by
Lamb and Southwell (1921). Mote (1965) analyzed free vibrations of initially prestressed circular disks.
Mostaghel and Tadjbakhsh (1973) studied the eigenvalue problem for rotating elastic circular plate, and
devised numerical procedures to evaluate the critical rotation speed and its dependence on the relevant
parameters. Seubert et al. (2000) investigated constrained layer damping in computer disk drives. Applying
the finite element method they calculated natural frequencies and damping ratios for the damped disks.
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The result provide damping values useful in the stability analysis of spinning disks that include the passive
damping. Auburn et al. (1984) presented the detailed approach and experimental results for controlling
both the rigid body and five structural bending modes of a circular plate used in large space structures.
Kuo and Huang (1992) developed analysis and simulation of a control system design method which can
stabilize all the vibration modes of a flexible distributed parameter system with a discrete set of sensors and
actuators without involving truncation of the higher frequency modes. The method based on the root locus
arguments for infinite dimensional systems was applied to a thin rotating with constant angular velocity
centrally clamped circular disk. Manzione and Nayfeh (2001a,b) analyzed the transverse vibrations of a
circular disk of uniform thickness rotating about its axis with constant angular velocity, when the disk is
subject to a space-fixed spring-mass-dashpot system. Using the method of multiple scales they determined
a nonlinear system of equations describing the modulation of the amplitudes and phases of two interacting
modes. The authors obtained interacting solutions among lowest modes and stability characteristics of
these solutions.

Piezoelectric materials show great advantages as actuators in intelligent structures i.e. structures with
highly distributed actuators, sensors, and processor networks. Piezoelectric sensors and actuators have been
applied successfully in the closed loop control (Bailey and Hubbard, 1985). Crawley and de Luis (1987)
presented a comprehensive static model for a piezoelectric actuator glued to a beam. The relationship
between static structural strains, both in the structure and in the actuator, and the applied voltage across
the piezoelectric was presented. This static approach was then used to predict the dynamic behavior. The
direct Liapunov method was applied to the stabilization problem of the beam subjected to time-dependent
axial forces (Tylikowski, 1993).

An active control approach that reduces transient noise transmission through a membrane placed in a
circular duct was presented by van Niekerk and Tongue (1995). Different control strategies were in-
vestigated analytically and than implemented experimentally. Structural vibration of a circular plate due
to the excitation of a piezoelectric circular actuator was modeled by van Niekerk et al. (1995) using a
static approach to modeling the actuator—plate interaction. The dynamic stability of circular plates
uniformly compressed by broad-band radial forces and described by stochastic It6 equations was in-
vestigated analytically by Tylikowski and Frischmuth (2001). The stability domains have been expressed
by the intensity and the mean value of the compressing force and the critical damping coefficients. A
dynamic model for the simply supported circular plate with a piezoelectric actuator glued to each of its
upper and lower surfaces was developed by Tylikowski (1999a). In the model the actuators were assumed
to be perfectly bonded. It means that the bonding layer is sufficiently thin that the shear of layer can be
neglected. Vibrations of capacitively shunting distributed piezoelectric elements perfectly glued to the
vibrating annular plate excited by harmonic displacement of the inner edge was analyzed by Tylikowski
(2001).

The aim of the present analytical work is to generalize the previous result concerning beams—one di-
mensional continuous systems (Tylikowski, 1999b) and to investigate an asymptotic stability of circular
plate compressed radially by time-dependent forces. The problem is reduced to the partial differential
equation of the three independent variables with time-dependent coefficient. The stability of parametric
vibrations of circular plate subjected to in-plane forces is analyzed by the Liapunov method. Assuming that
the compressing forces are physically realizable ergodic processes the plate dynamics is described by a
stochastic classical partial differential equation. The energy-like functional is proposed; its positiveness is
equivalent to the condition in which static buckling does not occur. Taking into account that a plate is
compressed radially by time-dependent and uniformly distributed along its edge forces, a dynamic stability
of an undeflected state of isotropic elastic circular plate is analyzed. The rate velocity feedback is applied to
stabilize the plate parametric vibration. The critical damping coefficient has been expressed by the variance
and the mean value of compressing force. The admissible variances of loading strongly depend on the
feedback gain factor.



A. Tylikowski, K. Frischmuth | International Journal of Solids and Structures 40 (2003) 5187-5196 5189

2. Problem formulation

We start with the problem of dynamic stability of circular plate without the active vibration control.
Consider transverse vibrations of a thin elastic circular plate clamped on its edge. The Kirchhoff hypothesis
on nondeformable normal elements to the middle plane is used and the rotary and coupling inertias are
neglected. Taking into account the in-plane compressive forces, we assume that they are uniformly dis-
tributed along the plate circular edge of radius R. The forces are time-dependent and consist of a constant
mean value S, and time-dependent oscillating part S(¢). The thickness of the plate ¢, is constant and the
energy of the transverse motion is dissipated by a viscous damping with the constant proportionality co-
efficient 5. The mass density is denoted by p and the bending stiffness by D. The dynamic equation of the
transverse plate motion has the classical form

> d
ptpa—;u 2ﬂptpa—v: L DAw (S +S(1)Aw =0 (r,¢) € Q= {0,R} x {0,21T} (1)

where

Llofay, 1 e
“roa\or r2 0¢?

Boundary conditions corresponding to clamped edge are as follows

ow
R) = —(R) = 2
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Dividing by pt, we introduce the notations
D S5 S(1)
e = — = — ) = —=
= S0 =20

and rewrite Eq. (1) in the form

*w ow
§+2ﬁa+e42w+(fo+f(z))4w:o (r,p) €Q (3)
The main purpose of the paper is to examine an almost sure asymptotic stability of the plate equilibrium
state. To estimate a perturbed solution of Eq. (3) it is necessary to introduce a measure of distance || || of

the solution of Eq. (3) with nontrivial initial conditions from the trivial one. The equilibrium state of Eq. (3)
is called almost sure asymptotically stable if

fim P{w(..0)] = 0} = 1 @

where P denotes the probability measure. In the present paper we shall use the Liapunov technique derived
for the Euler—Bernoulli beam by Kozin (1972), which provides a significant advantage in that the condi-
tions for stability can be obtained without explicitly solving the plate equation of motion. The method
is used to establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of
the plate compressed by the uniformly distributed time-dependent forces.

3. Dynamic stability analysis

If the parametric excitation is a physically realizable ergodic process, Eq. (3) is understood as the partial
differential equation with a random parameter. In order to examine the uniform stability of the plate
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equilibrium (the trivial solution w = 0), we choose the Liapunov functional as a sum of the modified kinetic
energy and the elastic energy of the plate (Tylikowski, 1993)

1 R 20T 2 1 1 2
V:E/0 /0 (Aw)2—2(1—v)aw( o, 6w>
1 8w 1aw)2

242 28 — - =4+ = —
v+ 2w 425" +-e or2 \ r or 1?2 0¢?
(1B 1

—l—fowAw] rdrde (5)

where v is the velocity of transverse motion. The classical static buckling loading f;, can be calculated from
variational inequality

R ol Fw/low 1 Pw 1w 1w\
Aw)? — ) (222 2 _ A
/0 /0 [( W =2(1-v) or? (r or +r2 @goz) +2(1 v)<r ordop 12 ago) rdrde
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If the static buckling condition is fulfilled (fy < fi;), inequality (6) holds and therefore functional (5) is
positive-definite. Therefore, the measure of distance between the perturbed solution and the trivial one can

be chosen as the square root of the functional || || = ¥'/>. Upon differentiation with respect to time and
using the boundary conditions (2) we obtain the time-derivative of functional (5) in the form
dv
O —2pV 42U (7)
where
1 R 21 5 X
U= 3 /0 /0 (2B%vw + 28w — (w+ pw)f (1) Aw)rdrde (8)

We look for a function 1 defined as a maximum over all admissible functions w and v satisfying the
boundary conditions of the ratio U/V
U(w,v)

V(w,v)

©)

A = max
——
w,0

Because a maximum is a particular case of a stationary point, we put to zero a variation of U/V and obtain
the variational equation

d(U=V)=0 (10)
The appropriate Euler equations have the form
B(p—2)w—lv —@Aw =0
(11)

t
BB —2)(v+2pw) —j% (2BAW + Av) — Lfodw — JeA*w =0
Using properties of Bessel functions we can prove that for solutions of boundary problem (2) repre-
sented as
W (7, @) = [J(Kun#) + Condy (Kn?)] (SIN R + COS 1) (12)

where «,, is the wavenumber, m = 1,2, 3, ... denotes the number of nodal circles and n = 0, 1,2, ... denotes
the number of nodal diameters, C,,, are the known constants, J, and I, are the Bessel functions
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Eliminating the operator 4 by means of (13) we solve the Euler equations with boundary conditions (2) and
finally we have

AWy, = = —K2 W (13)
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Therefore, in the class of functions (12) the following inequality holds for any pair of indices
U(Wans Vmn) < 2oV (Wonns ) (15)
We have the following chain of inequalities
U= ; ; U(Wons Un) < > 2 DoV Wy ) < ) :%3’ - Do ; ; V (W V) = AV
(16)
where
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Using the basic inequality (16) we can estimate the time-derivative of functional (5) as follows
< ap- iy (18)
The first order differential inequality (18) has the following solution
V() <V(0)exp [ - 2([3 f% /Ot Az, w) dr) t} (19)

where o is an element of probability space. As the function /4 is the known function of in-plane forces
Eq. (17) the ergodicity of the in-plane forces implies the ergodicity of function A. It means that

.1
EJl = lim ; A, w)dt (20)
t—00 0
where E denotes the mathematical expectation (averaging over the probability space).
Therefore, using the ergodicity of the in-plane forces we can state that the trivial solution of Eq. (3) is
almost sure asymptotically stable if

B=E(2) (21)

Inequality (21) gives us a possibility to obtain minimal damping coefficient guaranteeing the almost sure
asymptotic stability called critical damping coefficients. A domain where damping coefficients are greater
that the critical damping coefficient is called the stability region. The stability regions as functions of
loading variance, damping coefficient, constant component of in-plane force are calculated numerically
using an approximate method. First, discrete values of force f are chosen, the largest value 4 is determined,
and the expectation is calculated numerically integrating the product of A by the probability density
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Fig. 1. Stability domains of the circular plate for the Gaussian force.
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Fig. 2. Comparison of stability domains of the circular plate for the Gaussian (continuous line) and harmonic force (dotted line).

function of in-plane loading. This is accomplished for various values of parameters by choosing the
variance and varying the damping coefficient until inequality (21) will be satisfied. Numerical calculations
are performed for the Gaussian process with the constant mean value f, and variance ¢*> and for the
harmonic process with an amplitude 4. In order to compare both processes the variance of harmonic
process 6> = 42 /2 is used. Fig. 1 shows the influence of constant component of in-plane force on stability
region for the Gaussian parametric excitation. The coefficient y = 0 denotes that the plate without the
active vibration control is analyzed. In Fig. 2 a comparison of stability regions for the Gaussian and the
harmonic process. The stability regions are similar, but the Gaussian loading needs smaller critical damping
coefficient than the harmonic loading.

4. Plate dynamics equation with distributed feedback
Consider the circular plate with piezoelectric layers of thickness ¢, mounted on each of two opposite plate

sides. The layers are polarized in the direction perpendicular to the plate. The sensing and actuating effects
of piezoelectric layers are used to stabilize both the free vibration due to initial disturbances and the
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parametric vibration excited by the in-plane time-dependent forces. The sensor electric displacement is
given by

Ds = g.e3. + gey, (22)

where e3. and e;, are piezoelectric constants and ¢,, ¢ are the radial and circumferential strains of sensor,
respectively given by

1y + 2t 62_w

&= 33 (23)
th+2t1 (1w  Ow
“T T (r 0 +6r) (24)

The electric charge is obtained by integrating the electric displacement over the sensor surface assuming
the appropriate sensor polarization profile @°. It is assumed that the piezoelectrical properties are axially
symmetric, therefore e;, = e3, = e3

¢ Zts R 21
0, = _enlty +24) / / Aw®*rdrde (25)
2 0o Jo
Using the formula for a flat capacitor we obtain the sensor voltage ¥
631 Z +2Z 2
Vi = Awd®rdrd 26
463%14 / / wErerae (26)

where €33 is the dielectric constant, A, is the sensor surface.
Assuming the velocity feedback control the voltage applied to the actuator is

dr
Vy=K,— 27
T (27)
where K, is the gain factor.

Actuator stresses are equal

- daz Va @ (28)
ta
Gy = ‘i“”tinq’) (29)

where d,3; and d,3; are the piezoelectric strain/charge coefficients of actuator. @* is the axially symmetric
actuator polarization profile, i.e. #* = @(r). Integrating the actuator stresses with respect to the coordinate
perpendicular to the plate yields the equivalent electric moments

t+t,
[V (30)
2
th+ 1,
M = o, ; (31)

We modify the dynamic equation (3) introducing the axially symmetric bending moments of electric
origin
Pme 2 0me 1 Omy

e
or? +r or r Or 0 (ne)eq (32)

0w
o

+2/3 +eA2w+(fo+f())A +
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where the moments of electric origin m; and m{, are defined as follows

M bty + t)(ty + 26 tatsendani Ko .. [° 1

m=—"L=— (tp + ta) (tp + 265 ) tutses1 oy (Dd/ / Aw®rdrde (33)
ot, 8ptpdsess o Jo
M by + )ty + 28 tatse3ndazi Ko R 201

me, =Y (o6l + 20 htendi qsa/ / Awdrdrde (34)
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Substituting expressions (33) and (34) into (32) we obtain the equation of circular plate with distributed
velocity feedback. The equation is linear with the trivial solution w = 0 (equilibrium state).

5. Stabilization of plate parametric vibrations

The introductory stability problem being solved we can direct our attention to the stability analysis of
the plate with active vibration control. We assume the same Liapunov functional in the form (5). Calcu-
lating the time-derivative of the functional we take into account a modification of dynamic equation in-
troduced by the electric moments. Assuming the polarization profiles of the sensor and actuator in the form
of the first axially symmetric mode we repeat the derivation of the function 4. The total feedback gain factor
of modal control is denoted by y. The function /1 is defined in the following way

A= max Do (35)
~——
m=1,2,3,...
N— ———
n=0,12

g Ly Lyonn

where 4, for m,n =1,2,3,... are defined in the same way as in the stability problem Eq. (14) and 4o
depends on the feedback control and is given by

- (B + 13/ (0)/2°
A0 = \/’V2 —+ (eK%O _fO)K%O I ﬁz Y (36)

The stability regions as functions of loading variance ¢2, damping coefficient, feedback gain factor 7y, and
constant component of in-plane force are calculated numerically using an iterative method since the in-
equality (21) defining the stability regions is transcendental. Fig. 3 shows the comparison of stability do-
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Fig. 3. Stability domains of the circular plate for the critical Gaussian force with single-mode control.
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Fig. 4. Comparison of stability domains of the circular plate for the Gaussian and harmonic force with single-mode control.

mains for the critical mean force with a single-mode velocity feedback. It is seen that the stability regions
enlarge as the gain factor increases. The active vibration control stabilizes the plate compressed by the
critical force f... As long as the control is not active (y = 0) the stability region disappears. The influence of
the feedback gain is small for stretching mean forces. A saturation effect on stability regions is observed for
large values of gain factor. Fig. 4 compares the stability regions for the plate with critical mean force loaded
by the Gaussian force (continuous line) and harmonic force (dotted line), respectively. It is visible that the
influence of the class of excitation is noticeable for 3 <y < 10.

6. Conclusions

By means of the direct Liapunov method the influence of active stabilization of a parametrically excited
circular plate with distributed piezoelectric sensor and actuator, and the velocity feedback has been studied.
The plate is clamped and subject to axially symmetric in-plane forces randomly fluctuating. Without any
passive damping and control the plate vibrations are unstable due to the parametric excitation. The sta-
bilization of stochastic vibrations needs a sufficiently large active damping coefficient. A saturation effect of
influence of gain factor on stability domains is observed. The stability domains do not change qualitatively
when going from the Gaussian process to the harmonic one.
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